osmr / imgclsmob
run from
github.com/osmr/imgclsmob
TOP 1 ACCURACY | TOP 5 ACCURACY |
SPEED
|
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODEL | CODE | PAPER |
ε-REPR
|
CODE | PAPER |
ε-REPR
|
PAPER |
GLOBAL RANK
|
|||||
108-MENet-8x1
(g=3) |
56.1% | -- | 79.2% | -- | #532 | ||||||||
1.0-SqNxt-23
|
57.5% | -- | 80.9% | -- | #529 | ||||||||
1.0-SqNxt-23v5
|
59.2% | -- | 82.2% | -- | #523 | ||||||||
128-MENet-8x1
(g=4) |
57.6% | -- | 80.4% | -- | #528 | ||||||||
1.5-SqNxt-23
|
65.1% | -- | 86.5% | -- | #503 | ||||||||
1.5-SqNxt-23v5
|
66.2% | -- | 87.0% | -- | #485 | ||||||||
160-MENet-8x1
(g=8) |
56.2% | -- | 79.2% | -- | #531 | ||||||||
2.0-SqNxt-23
|
69.4% | -- | 89.0% | -- | #462 | ||||||||
2.0-SqNxt-23v5
|
70.4% | -- | 89.3% | -- | #451 | ||||||||
228-MENet-12x1
(g=3) |
65.9% | -- | 86.8% | -- | #494 | ||||||||
256-MENet-12x1
(g=4) |
67.3% | -- | 87.5% | -- | #481 | ||||||||
348-MENet-12x1
(g=3) |
71.8% | -- | 90.4% | -- | #435 | ||||||||
352-MENet-12x1
(g=8) |
68.4% | -- | 88.0% | -- | #473 | ||||||||
456-MENet-24x1
(g=3) |
74.7% | -- | 92.0% | -- | #387 | ||||||||
AlexNet
|
59.0% | -- | 81.8% | -- | 417.5 | #524 | |||||||
AlexNet-b
|
58.4% | -- | 81.0% | -- | 418.1 | #526 | |||||||
BAM-ResNet-50
|
76.9% | -- | 93.4% | -- | #324 | ||||||||
BN-Inception
|
74.6% | -- | 92.3% | -- | 426.1 | #381 | |||||||
BN-VGG-11
|
71.0% | -- | 90.4% | -- | 420.9 | #438 | |||||||
BN-VGG-11b
|
70.4% | -- | 90.0% | -- | 415.6 | #450 | |||||||
BN-VGG-13
|
72.2% | -- | 90.9% | -- | 406.0 | #432 | |||||||
BN-VGG-13b
|
71.6% | -- | 90.4% | -- | 394.5 | #439 | |||||||
BN-VGG-16
|
74.3% | -- | 92.2% | -- | 400.7 | #382 | |||||||
BN-VGG-16b
|
72.8% | -- | 91.3% | -- | 394.4 | #419 | |||||||
BN-VGG-19
|
75.9% | -- | 92.9% | -- | 395.8 | #356 | |||||||
BN-VGG-19b
|
73.9% | -- | 91.6% | -- | 385.3 | #411 | |||||||
CBAM-ResNet-50
|
77.6% | -- | 93.9% | -- | #299 | ||||||||
CondenseNet-74
(C=G=4) |
73.8% | -- | 91.7% | -- | #408 | ||||||||
CondenseNet-74
(C=G=8) |
71.1% | -- | 89.9% | -- | #446 | ||||||||
DarkNet-53
|
78.3% | -- | 94.4% | -- | #265 | ||||||||
DARTS
|
73.3% | -- | 91.3% | -- | #418 | ||||||||
DenseNet-121
|
76.5% | 76.4% | 93.0% | 93.3% | #353 | ||||||||
DenseNet-161
|
78.1% | -- | 93.9% | -- | 386.0 | #278 | |||||||
DenseNet-169
|
77.6% | 77.9% | 93.7% | 94.1% | #303 | ||||||||
DenseNet-201
|
78.2% | 78.5% | 93.9% | 94.5% | 392.4 | #283 | |||||||
DiracNetV2-18
|
68.5% | -- | 88.3% | -- | #472 | ||||||||
DiracNetV2-34
|
71.2% | -- | 90.1% | -- | #446 | ||||||||
DLA-102
|
78.0% | -- | 94.0% | -- | #275 | ||||||||
DLA-169
|
78.7% | -- | 94.3% | -- | #232 | ||||||||
DLA-34
|
74.6% | -- | 92.1% | -- | #389 | ||||||||
DLA-46-C
|
65.7% | -- | 86.8% | -- | #487 | ||||||||
DLA-60
|
77.0% | -- | 93.3% | -- | #335 | ||||||||
DLA-X-102
|
78.5% | -- | 94.2% | -- | #243 | ||||||||
DLA-X2-102
|
79.5% | -- | 94.6% | -- | #187 | ||||||||
DLA-X-46-C
|
66.7% | -- | 87.3% | -- | #482 | ||||||||
DLA-X-60
|
78.2% | -- | 94.0% | -- | #267 | ||||||||
DLA-X-60-C
|
69.0% | -- | 89.1% | -- | #466 | ||||||||
DPN-131
|
79.5% | -- | 94.5% | -- | #184 | ||||||||
DPN-68
|
76.8% | -- | 93.2% | -- | #337 | ||||||||
DPN-98
|
79.2% | -- | 94.5% | -- | #207 | ||||||||
DRN-C-26
|
75.1% | -- | 92.5% | -- | #375 | ||||||||
DRN-C-42
|
77.1% | -- | 93.4% | -- | #322 | ||||||||
DRN-C-58
|
78.3% | -- | 94.0% | -- | #272 | ||||||||
DRN-D-105
|
79.4% | -- | 94.5% | -- | #188 | ||||||||
DRN-D-22
|
74.2% | -- | 91.8% | -- | #403 | ||||||||
DRN-D-38
|
76.2% | -- | 93.1% | -- | #352 | ||||||||
DRN-D-54
|
78.8% | -- | 94.1% | -- | #260 | ||||||||
EfficientNet-B0
|
75.2% | 76.3% | 92.5% | 93.2% | #371 | ||||||||
EfficientNet-B0b
|
76.1% | -- | 93.0% | -- | #353 | ||||||||
EfficientNet-B1
|
77.0% | 78.8% | 93.6% | 94.4% | #325 | ||||||||
EfficientNet-B1b
|
78.4% | -- | 94.1% | -- | #266 | ||||||||
EfficientNet-B2b
|
79.7% | -- | 94.7% | -- | 368.5 | #174 | |||||||
EfficientNet-B3b
|
81.4% | -- | 95.6% | -- | 328.4 | #98 | |||||||
EfficientNet-B4b
|
82.8% | -- | 96.2% | -- | 221.8 | #61 | |||||||
EfficientNet-B5b
|
83.6% | -- | 96.7% | -- | 115.4 | #49 | |||||||
EfficientNet-B6b
|
84.1% | -- | 96.9% | -- | 68.4 | #46 | |||||||
EfficientNet-B7b
|
84.3% | -- | 96.9% | -- | 39.5 | #35 | |||||||
ESPNetv2 x0.5
|
57.7% | -- | 79.8% | -- | #530 | ||||||||
ESPNetv2 x1.0
|
66.1% | -- | 86.5% | -- | #489 | ||||||||
ESPNetv2 x1.25
|
67.9% | -- | 87.8% | -- | #476 | ||||||||
ESPNetv2 x1.5
|
69.2% | -- | 88.7% | -- | #464 | ||||||||
ESPNetv2 x2.0
|
72.1% | -- | 90.4% | -- | #435 | ||||||||
FBNet-Cb
|
75.1% | -- | 92.4% | -- | 407.7 | #377 | |||||||
FD-MobileNet x0.25
|
44.1% | -- | 69.0% | -- | #539 | ||||||||
FD-MobileNet x0.5
|
56.9% | -- | 79.8% | -- | #530 | ||||||||
FD-MobileNet x0.75
|
61.6% | -- | 83.6% | -- | #512 | ||||||||
FD-MobileNet x1.0
|
65.8% | -- | 86.6% | -- | #491 | ||||||||
HarDNet-39DS
|
72.1% | -- | 90.4% | -- | 406.9 | #434 | |||||||
HarDNet-68
|
76.5% | -- | 93.0% | -- | 403.0 | #348 | |||||||
HarDNet-68DS
|
74.3% | -- | 91.9% | -- | 408.0 | #400 | |||||||
HarDNet-85
|
78.0% | -- | 93.9% | -- | 392.2 | #282 | |||||||
HRNetV2-W18
|
76.8% | -- | 93.4% | -- | 382.9 | #338 | |||||||
HRNetV2-W30
|
78.2% | -- | 94.2% | -- | 377.8 | #272 | |||||||
HRNetV2-W32
|
78.4% | -- | 94.2% | -- | 374.2 | #254 | |||||||
HRNetV2-W40
|
78.9% | -- | 94.5% | -- | 354.0 | #209 | |||||||
HRNetV2-W44
|
78.9% | -- | 94.4% | -- | 333.8 | #226 | |||||||
HRNetV2-W48
|
79.3% | -- | 94.5% | -- | 315.6 | #194 | |||||||
HRNetV2-W64
|
79.5% | -- | 94.7% | -- | 265.0 | #184 | |||||||
HRNet-W18 Small V1
|
72.3% | -- | 90.7% | -- | 399.5 | #429 | |||||||
HRNet-W18 Small V2
|
75.1% | -- | 92.4% | -- | 393.6 | #376 | |||||||
IBN(b)-ResNet-50
|
76.4% | -- | 93.1% | -- | #348 | ||||||||
IBN-DenseNet-121
|
75.5% | -- | 92.8% | -- | #363 | ||||||||
IBN-DenseNet-169
|
76.8% | -- | 93.5% | -- | #339 | ||||||||
IBN-ResNet-101
|
78.7% | -- | 94.4% | -- | #221 | ||||||||
IBN-ResNet-50
|
77.2% | -- | 93.6% | -- | #315 | ||||||||
IBN-ResNeXt-101
(32x4d) |
79.1% | -- | 94.6% | -- | #209 | ||||||||
IGCV3 x0.25
|
46.3% | -- | 71.3% | -- | #538 | ||||||||
IGCV3 x0.5
|
60.2% | -- | 82.7% | -- | #517 | ||||||||
IGCV3 x0.75
|
68.9% | -- | 88.6% | -- | #467 | ||||||||
IGCV3 x1.0
|
72.1% | -- | 90.8% | -- | #433 | ||||||||
InceptionResNetV2
|
80.1% | -- | 95.1% | -- | #134 | ||||||||
InceptionV3
|
78.9% | -- | 94.4% | -- | #231 | ||||||||
InceptionV4
|
79.4% | -- | 94.7% | -- | #180 | ||||||||
i-RevNet-301
|
74.0% | -- | 91.6% | -- | #409 | ||||||||
MixNet-L
|
78.9% | 78.9% | 94.2% | 94.2% | 400.3 | #229 | |||||||
MixNet-M
|
77.1% | 77.0% | 93.4% | 93.3% | 404.0 | #328 | |||||||
MixNet-S
|
76.0% | 75.8% | 92.8% | 92.8% | 413.1 | #355 | |||||||
MnasNet-A1
|
75.3% | 75.2% | 92.6% | 92.5% | 413.1 | #363 | |||||||
MnasNet-B1
|
74.6% | -- | 92.2% | -- | 415.4 | #387 | |||||||
MobileNetV2b x0.25
|
51.4% | -- | 74.7% | -- | 402.4 | #537 | |||||||
MobileNetV2b x0.5
|
64.0% | -- | 85.0% | -- | 406.1 | #507 | |||||||
MobileNetV2b x0.75
|
68.9% | -- | 88.2% | -- | 390.5 | #468 | |||||||
MobileNetV2b x1.0
|
71.5% | -- | 90.2% | -- | 403.0 | #444 | |||||||
MobileNetV2 x0.25
|
51.7% | -- | 75.5% | -- | #536 | ||||||||
MobileNetV2 x0.5
|
64.0% | -- | 85.1% | -- | #508 | ||||||||
MobileNetV2 x0.75
|
69.8% | -- | 89.2% | -- | #455 | ||||||||
MobileNetV2 x1.0
|
73.0% | -- | 91.1% | -- | #420 | ||||||||
MobileNetV3 L/224/1.0
|
75.1% | -- | 92.2% | -- | #384 | ||||||||
MobileNet x0.25
|
53.7% | -- | 77.5% | -- | #534 | ||||||||
MobileNet x0.5
|
65.8% | -- | 86.5% | -- | #495 | ||||||||
MobileNet x0.75
|
69.9% | -- | 89.2% | -- | #454 | ||||||||
MobileNet x1.0
|
73.4% | -- | 91.0% | -- | #424 | ||||||||
NASNet-A [email protected]
|
74.3% | -- | 91.8% | -- | #399 | ||||||||
NASNet-A [email protected]
|
81.9% | -- | 95.8% | -- | #80 | ||||||||
PeleeNet
|
68.2% | -- | 88.5% | -- | #469 | ||||||||
PNASNet-5-Large
|
82.1% | -- | 95.7% | -- | #71 | ||||||||
PolyNet
|
80.9% | 81.3% | 95.5% | 95.8% | #105 | ||||||||
PrepResNet-10
|
64.9% | -- | 85.8% | -- | #505 | ||||||||
PreResNet-101
|
78.3% | -- | 94.1% | -- | #264 | ||||||||
PreResNet-101b
|
79.0% | -- | 94.4% | -- | #212 | ||||||||
PreResNet-12
|
66.1% | -- | 86.5% | -- | #487 | ||||||||
PreResNet-14
|
67.4% | -- | 87.6% | -- | #481 | ||||||||
PreResNet-152
|
79.1% | -- | 94.5% | -- | #215 | ||||||||
PreResNet-152b
|
79.9% | -- | 94.8% | -- | #160 | ||||||||
PreResNet-16
|
69.5% | -- | 88.9% | -- | #461 | ||||||||
PreResNet-18
|
71.6% | -- | 90.3% | -- | #442 | ||||||||
PreResNet-18 x0.25
|
59.9% | -- | 81.9% | -- | 426.0 | #521 | |||||||
PreResNet-18 x0.5
|
66.0% | -- | 86.6% | -- | 433.1 | #490 | |||||||
PreResNet-18 x0.75
|
69.8% | -- | 88.9% | -- | 429.0 | #459 | |||||||
PreResNet-200b
|
78.7% | -- | 94.1% | -- | #261 | ||||||||
PreResNet-26
|
73.7% | -- | 91.5% | -- | #414 | ||||||||
PreResNet-269b
|
79.1% | -- | 94.2% | -- | #252 | ||||||||
PreResNet-34
|
75.1% | -- | 92.3% | -- | #379 | ||||||||
PreResNet-50
|
77.6% | -- | 93.5% | -- | #301 | ||||||||
PreResNet-50b
|
77.5% | -- | 93.4% | -- | #307 | ||||||||
PreResNet=BC-14b
|
68.7% | -- | 88.2% | -- | 427.5 | #474 | |||||||
PreResNet-BC-26b
|
74.5% | -- | 92.0% | -- | #397 | ||||||||
PreResNet-BC-38b
|
77.1% | -- | 93.4% | -- | #320 | ||||||||
ProxylessNAS CPU
|
75.3% | -- | 92.4% | -- | #373 | ||||||||
ProxylessNAS GPU
|
75.2% | -- | 92.6% | -- | #372 | ||||||||
ProxylessNAS Mob-14
|
76.7% | -- | 93.4% | -- | #329 | ||||||||
ProxylessNAS Mobile
|
74.6% | -- | 92.2% | -- | #393 | ||||||||
PyramidNet-101
(a=360) |
78.0% | -- | 93.8% | -- | #284 | ||||||||
ResNet-10
|
65.3% | -- | 85.6% | -- | #502 | ||||||||
ResNet-101
|
78.1% | 78.2% | 93.8% | 94.0% | #290 | ||||||||
ResNet-101b
|
79.4% | -- | 94.7% | -- | #187 | ||||||||
ResNet-12
|
66.4% | -- | 86.7% | -- | #489 | ||||||||
ResNet-14
|
67.5% | -- | 87.5% | -- | #479 | ||||||||
ResNet-152
|
79.0% | 78.6% |
|
94.5% | 94.3% | #205 | |||||||
ResNet-152b
|
80.1% | -- | 95.0% | -- | #142 | ||||||||
ResNet-16
|
69.5% | -- | 88.8% | -- | #462 | ||||||||
ResNet-18
|
71.5% | 72.1% | 90.2% | -- | 412.9 | #445 | |||||||
ResNet-18 x0.25
|
60.4% | -- | 82.2% | -- | 438.7 | #516 | |||||||
ResNet-18 x0.5
|
66.2% | -- | 86.7% | -- | 438.2 | #488 | |||||||
ResNet-18 x0.75
|
69.6% | -- | 88.9% | -- | 435.0 | #459 | |||||||
ResNet-26
|
73.7% | -- | 91.5% | -- | #415 | ||||||||
ResNet-34
|
75.2% | -- | 92.2% | -- | #383 | ||||||||
ResNet-50
|
77.7% | 77.1% |
|
93.7% | 93.3% |
|
#296 | ||||||
ResNet-50b
|
77.6% | -- | 93.6% | -- | #303 | ||||||||
ResNet-BC-14b
|
69.3% | -- | 88.5% | -- | 428.6 | #464 | |||||||
ResNet-BC-26b
|
74.9% | -- | 92.0% | -- | #383 | ||||||||
ResNet-BC-38b
|
76.3% | -- | 93.0% | -- | #351 | ||||||||
ResNeXt-101
(32x4d) |
80.0% | -- | 94.8% | -- | #156 | ||||||||
ResNeXt-101
(64x4d) |
80.4% | -- | 94.9% | -- | #127 | ||||||||
ResNeXt-14
(16x4d) |
68.1% | -- | 87.5% | -- | #480 | ||||||||
ResNeXt-14
(32x2d) |
67.4% | -- | 87.2% | -- | #480 | ||||||||
ResNeXt-14
(32x4d) |
69.7% | -- | 88.5% | -- | #467 | ||||||||
ResNeXt-26
(32x2d) |
73.4% | -- | 91.1% | -- | #423 | ||||||||
ResNeXt-26
(32x4d) |
75.9% | -- | 92.5% | -- | #357 | ||||||||
ResNeXt-50
(32x4d) |
79.2% | -- | 94.4% | -- | #205 | ||||||||
SelecSLS-42b
|
77.1% | -- | 93.4% | -- | 405.9 | #317 | |||||||
SelecSLS-60
|
77.9% | -- | 93.9% | -- | 414.8 | #291 | |||||||
SelecSLS-60b
|
78.4% | -- | 94.2% | -- | 409.4 | #262 | |||||||
SENet-154
|
81.4% | 82.7% | 95.4% | 96.2% | #109 | ||||||||
SENet-16
|
74.4% | -- | 91.8% | -- | #397 | ||||||||
SENet-28
|
78.1% | -- | 94.0% | -- | #270 | ||||||||
SE-PreResNet-10
|
66.0% | -- | 86.6% | -- | #492 | ||||||||
SE-PreResNet-18
|
71.9% | -- | 90.4% | -- | #440 | ||||||||
SE-PreResNet-BC-26b
|
76.8% | -- | 93.4% | -- | #334 | ||||||||
SE-PreResNet-BC-38b
|
78.4% | -- | 94.2% | -- | #260 | ||||||||
SE-ResNet-10
|
66.1% | -- | 86.3% | -- | #501 | ||||||||
SE-ResNet-101
|
78.1% | -- | 94.1% | -- | #275 | ||||||||
SE-ResNet-101b
|
80.3% | -- | 95.1% | -- | 394.9 | #132 | |||||||
SE-ResNet-152
|
78.5% | -- | 94.2% | -- | #248 | ||||||||
SE-ResNet-18
|
71.8% | -- | 90.4% | -- | #436 | ||||||||
SE-ResNet-26
|
74.3% | -- | 91.8% | -- | #398 | ||||||||
SE-ResNet-50
|
78.8% | -- | 94.2% | -- | 369.0 | #234 | |||||||
SE-ResNet-50b
|
79.2% | -- | 94.6% | -- | #204 | ||||||||
SE-ResNet-BC-26b
|
76.4% | -- | 93.0% | -- | #351 | ||||||||
SE-ResNet-BC-38b
|
78.4% | -- | 94.1% | -- | #259 | ||||||||
SE-ResNeXt-101
(32x4d) |
80.8% | -- | 95.2% | -- | 369.8 | #114 | |||||||
SE-ResNeXt-101
(64x4d) |
80.7% | -- | 95.2% | -- | 263.6 | #126 | |||||||
SE-ResNeXt-50
(32x4d) |
79.7% | -- | 94.8% | -- | 389.8 | #172 | |||||||
ShuffleNetV2b x0.5
|
59.7% | -- | 81.8% | -- | #522 | ||||||||
ShuffleNetV2b x1.0
|
69.4% | -- | 88.8% | -- | #463 | ||||||||
ShuffleNetV2b x1.5
|
72.7% | -- | 90.9% | -- | #425 | ||||||||
ShuffleNetV2b x2.0
|
74.4% | -- | 91.7% | -- | #410 | ||||||||
ShuffleNetV2 x0.5
|
59.0% | -- | 81.4% | -- | #525 | ||||||||
ShuffleNetV2 x1.0
|
68.6% | -- | 88.4% | -- | #471 | ||||||||
ShuffleNetV2 x1.5
|
72.5% | -- | 90.6% | -- | #427 | ||||||||
ShuffleNetV2 x2.0
|
74.1% | -- | 91.6% | -- | #407 | ||||||||
ShuffleNet x0.25
(g=1) |
37.6% | -- | 62.7% | -- | #541 | ||||||||
ShuffleNet x0.25
(g=3) |
38.3% | -- | 63.5% | -- | #540 | ||||||||
ShuffleNet x0.5
(g=1) |
53.4% | -- | 77.4% | -- | #535 | ||||||||
ShuffleNet x0.5
(g=3) |
55.8% | -- | 79.2% | -- | #533 | ||||||||
ShuffleNet x0.75
(g=1) |
60.4% | -- | 82.9% | -- | #513 | ||||||||
ShuffleNet x0.75
(g=3) |
61.8% | -- | 83.5% | -- | #511 | ||||||||
ShuffleNet x1.0
(g=1) |
65.1% | -- | 86.1% | -- | #504 | ||||||||
ShuffleNet x1.0
(g=2) |
65.8% | -- | 86.4% | -- | #500 | ||||||||
ShuffleNet x1.0
(g=3) |
65.6% | -- | 86.5% | -- | #497 | ||||||||
ShuffleNet x1.0
(g=4) |
65.8% | -- | 86.6% | -- | #496 | ||||||||
ShuffleNet x1.0
(g=8) |
65.9% | -- | 86.6% | -- | #494 | ||||||||
SPNASNet
|
74.1% | -- | 91.8% | -- | 412.2 | #400 | |||||||
SqueezeNet v1.0
|
60.7% | -- | 82.3% | -- | #513 | ||||||||
SqueezeNet v1.1
|
60.7% | -- | 82.3% | -- | #517 | ||||||||
SqueezeResNet v1.0
|
60.2% | -- | 81.9% | -- | #518 | ||||||||
SqueezeResNet v1.1
|
59.9% | -- | 81.8% | -- | #521 | ||||||||
VGG-11
|
70.1% | 70.4% | 89.6% | 89.6% | 411.2 | #451 | |||||||
VGG-13
|
71.2% | 71.3% | 90.2% | 90.1% | 406.1 | #443 | |||||||
VGG-16
|
73.0% | 74.4% | 91.3% | 91.9% | 396.4 | #422 | |||||||
VGG-19
|
74.3% | 74.5% | 92.1% | 92.0% | 338.8 | #391 | |||||||
VoVNet-39
|
76.8% | -- | 93.4% | -- | 410.3 | #335 | |||||||
VoVNet-57
|
77.7% | -- | 93.7% | -- | 402.2 | #295 | |||||||
WRN-50-2
|
77.5% | -- | 93.6% | -- | #309 | ||||||||
Xception
|
79.0% | 79.0% | 94.5% | 94.5% | #204 | ||||||||
ZFNet
|
60.2% | 64.0% | 82.7% | 85.3% | 428.2 | #519 | |||||||
ZFNet-b
|
63.6% | -- | 85.1% | -- | 426.3 | #507 |
[](https://sotabench.com/user/osemery/repos/osmr/imgclsmob)
How the Repository is Evaluated
The fullsotabench.py
file - source
from torchbench.image_classification import ImageNet
from pytorch.pytorchcv.models.model_store import _model_sha1
from pytorch.pytorchcv.model_provider import get_model as ptcv_get_model
import torchvision.transforms as transforms
import torch
import math
from sys import version_info
# import os
for model_name, model_metainfo in (_model_sha1.items() if version_info[0] >= 3 else _model_sha1.iteritems()):
net = ptcv_get_model(model_name, pretrained=True)
error, checksum, repo_release_tag, caption, paper, ds, img_size, scale, batch, rem = model_metainfo
if (ds != "in1k") or (img_size == 0) or ((len(rem) > 0) and (rem[-1] == "*")):
continue
paper_model_name = caption
paper_arxiv_id = paper
input_image_size = img_size
resize_inv_factor = scale
batch_size = batch
model_description = "pytorch" + (rem if rem == "" else ", " + rem)
assert (not hasattr(net, "in_size")) or (input_image_size == net.in_size[0])
ImageNet.benchmark(
model=net,
model_description=model_description,
paper_model_name=paper_model_name,
paper_arxiv_id=paper_arxiv_id,
input_transform=transforms.Compose([
transforms.Resize(int(math.ceil(float(input_image_size) / resize_inv_factor))),
transforms.CenterCrop(input_image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
batch_size=batch_size,
num_gpu=1,
# data_root=os.path.join("..", "imgclsmob_data", "imagenet")
)
torch.cuda.empty_cache()
STATUS
BUILD
COMMIT MESSAGE
RUN TIME
#
178
Merge pull request #68 from RuRo/fix_res2net_preactiv
Fix res2n…
osmr
aafbed6
21bc972
· Jun 16 2020
#
167
Update PIP-packages (gluoncv2: 0.0.57, pytorchcv: 0.0.58, chaine…
osmr
63859ce
· Apr 09 2020
#
139
1) Fix a bug in the previous commit, 2) Working on PRNet
osmr
6587578
· Feb 22 2020
#
93
Update PIP-packages (gluoncv2: 0.0.55, pytorchcv: 0.0.55, chaine…
osmr
f928f6c
· Jan 17 2020
#
90
Update PIP-packages (gluoncv2: 0.0.54, pytorchcv: 0.0.54, chaine…
osmr
ba82c6a
· Jan 16 2020
#
74
1) Add testing all models for PT & TF2; 2) Prepare some TF model…
osmr
3c35a25
· Jan 10 2020
#
68
1) Work on TF2-models, 2) Prepare some TF models for publishing,…
osmr
c427bf9
· Dec 31 2019
#
36
Update PIP-packages (gluoncv2: 0.0.53, pytorchcv: 0.0.53, chaine…
osmr
72e817a
· Dec 05 2019
#
27
Update PIP-packages (gluoncv2: 0.0.52, pytorchcv: 0.0.52, chaine…
osmr
df5b285
· Nov 24 2019
#
17
Update PIP-packages (gluoncv2: 0.0.51, pytorchcv: 0.0.51, chaine…
osmr
458c23b
· Nov 10 2019